Artificial intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems. Specific applications of AI include expert systems, natural language processing, speech recognition and machine vision.

Machine learning (ML) is a branch of artificial intelligence (AI) and computer science which focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy.

Deep Learning (DP) is a type of machine learning based on artificial neural networks in which multiple layers of processing are used to extract progressively higher level features from data.

Machine Learning Process

There are five steps in any Machine Learning Process. The two first steps are shared with the Data Science methodology, Data Gatherring/Collection and Data Cleaning. Feature Extraction, Model Training and Prediction are specific tasks for ML Projects.



Data Gathering

Data Gathering

This Machine Learning process is base on the the first steop of the Data Science step. And just like the name states, it is simply the step where we obtain all available data needed from various data sources.

Data Cleaning

The real-world data is not perfect, sometime the data is mistaking placed, missing, invalid. Data cleaning is the process of identifying and removing (or correcting) inaccurate records from a dataset, table, or database and refers to recognizing unfinished, unreliable, inaccurate or non-relevant parts of the data and then restoring, remodelling, or removing the dirty or crude data.

Data cleaning techniques may be performed as batch processing through scripting or interactively with data cleansing tools.

Data Cleaning
Feature Extraction

Feature Extraction

Feature extraction is a technique used to reduce a large input data set into relevant features. This is done with dimensionality reduction to transform large input data into smaller, meaningful groups for processing.

This step also involves Feature Engineering, in which you use the domain knowledge of the data to transform it into the features which would improve the accuracy of your Machine Learning model.

Model Training

This is the main step in which the Machine Learning model is actually built by using a particular algorithm and input training data from the previous step. Depending upon the size of the data, the type of algorithm used and/or the hardware on which it is run, this step can take anywhere from few minutes to hours to learn the model.

Data Visualization
Prediction

Prediction

The final step of the pipeline is to evaluate the performance of the model you just trained. If the performance of the model does not meet the acceptance criteria, then the model need to be retraining again with the updated information. Model Training and Predictions steps often have to be repeated back and forth multiple times before a good enough model can be trained.



We work with many open-source libraries and cloud services. We find the best solution for your needs

Matlab Azure Machine Learning AWS Machine Learning Google Cloud Machine Learning Python Tensor Flow Scikit Learn Keras SciPy NumPy Matplotlib Pandas

© 2022 Andes Arena Inc.
Boulder, Colorado – USA
info@AndesArena.com
An error has occurred. This application may no longer respond until reloaded. Reload 🗙